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Abstract

Gentiooligosaccharides and alternansucrase gentiobiose acceptor products were

fractionated by their degree of polymerization (DP) on a Bio-Gel P2 column.

Fractions were characterized by matrix-assisted laser desorption ionization time-

of-flight mass spectroscopy, and incubated with human faecal bacteria under

anaerobic conditions at 37 1C. The growth of predominant gut bacteria on the

oligosaccharides was evaluated by fluorescence in situ hybridization and a prebiotic

index (PI) was calculated. Lower DP gentiooligosaccharides (DP2–3) showed the

highest selectivity (PI of 4.89 and 3.40, respectively), whereas DP4–5 alternan-

sucrase gentiobiose acceptor products generated the greatest values (PI of 5.87).

The production of short-chain fatty acids was also determined during the time

course of the reactions. The mixture of DP6–10 alternansucrase gentiobiose

acceptor products generated the highest levels of butyric acid but the lowest levels

of lactic acid. Generally, for similar molecular weights, alternansucrase gentiobiose

acceptor products gave higher PI values than gentiooligosaccharides.

Introduction

Prebiotics are dietary ingredients which should possess the

three following criteria: (1) be resistant to gastric acidity,

hydrolysis by mammalian enzymes and gastrointestinal

absorption; (2) be fermented by the intestinal microflora;

and (3) stimulate selectively the growth and/or activity of

intestinal bacteria associated with health and wellbeing

(Gibson and Roberfroid, 1995; Gibson et al., 2004). Some

carbohydrates, such as fructooligosaccharides (FOS), inulin

and galactooligosaccharides (GOS), are well-accepted pre-

biotics. However, there are still many oligosaccharides under

investigation for their prebiotic potential. This is the case for

the gentiooligosaccharides (GEOS) among others, which are

b(1–6)-linked glucose polymers. Such compounds are not

hydrolysed in the stomach or small intestine (Playne &

Crittenden, 1996) and therefore reach the colon intact. In

addition, their bitter taste makes them useful as taste-

improvers for certain beverages (Côté et al., 2003).

Recently, in vitro studies have demonstrated that GEOS

have bifidogenic activity higher than that of FOS (Rycroft

et al., 2001). However, fermentation of GEOS is not as

selective as that of FOS, and their prebiotic status therefore

remains in doubt.

The metabolic end products from one microbial group

can be used as a substrate for others, and some microorgan-

isms benefit from substrates which they are not able to

ferment directly (Gibson & Roberfroid, 1995). Therefore, to

increase our knowledge of the fermentation selectivity of

GEOS, it would be useful to determine the influence of

different molecular weight fractions using mixed culture

inocula.

Promising sources of prebiotic oligosaccharides are

those obtained by enzymatic synthesis using alternan-

sucrases (ASRs) (Holt et al., 2005; Sanz et al., 2005a). Such

enzymes are extracellular glucansucrases isolated from Leu-

conostoc mesenteroides NRRL B-1355, which catalyses reac-

tions between sucrose and low-molecular-weight acceptor

carbohydrates (Côté & Robyt, 1982a, b). Oligosaccharides

with both a(1� 6)- and a(1� 3)-linked acceptor products

are synthesized from these reactions. The selective growth

of purportedly beneficial bacteria using alternan maltose

acceptor products has been reported recently (Sanz

et al., 2005a).

In this work, the effect of GEOS and alternan gentiobiose

acceptor oligosaccharides on the selective growth of faecal

bacteria was studied. In addition, the influence of molecular

weight and linkage structure was investigated.
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Materials andmethods

Alternansucrase

Alternansucrase was isolated from sucrose-grown cultures

of Leuconostoc mesenteroides NRRL B-21297. Cell-free cul-

ture fluid was concentrated by ultrafiltration using a 100 000

nominal molecular weight cut-off membrane and dialysed

against 20 mM pH 5.4 sodium acetate buffer. The only

glycansucrase activity detected in this concentrate was ASR

(Côté et al., 2003).

Carbohydrates

Sucrose was purchased from Sigma Co. (Poole, UK). FOS

(Raftilose P-95) were acquired from Orafti (Tienen, Belgium)

and GEOS from Wako Pure Chemicals (Osaka, Japan).

Acceptor reaction conditions

Acceptor reactions were carried out at room temperature in

20 mM, pH 5.4 sodium acetate buffer containing 0.01%

(weight in volume, w/v) sodium azide, as described pre-

viously (Côté et al., 2003). Reactions were terminated when

all sucrose had been consumed, typically after 24–48 h.

Characterizationofoligosaccharides

Oligosaccharides were separated using a Bio-Gel P2 (fine

mesh) column (5� 150 cm) (BioRad, Watford, UK), eluted

with water under gravity flow. Each fraction was detected by

matrix-assisted laser desorption ionization time-of-flight

(MALDI-TOF) mass spectrometry using a Bruker Daltonics

Omniflex spectrometer (Bremen, Germany). Aqueous solu-

tions of oligosaccharides were mixed with an equal volume

of saturated 2,5-dihydroxybenzoic acid solution in acetoni-

trile, allowed to dry on the probe and subjected to MALDI-

TOF mass spectrometry.

Invitro fermentations

In vitro fermentations were carried out as described pre-

viously (Sanz et al., 2005b). Carbohydrates (7 mg) were

dissolved in autoclaved nutrient basal medium to give a

final concentration of 1% (w/v). Samples were then inocu-

lated with 70 mL of slurry prepared by homogenizing fresh

human faeces from healthy donors (10%, w/v) in phos-

phate-buffered saline (PBS; 8 g L�1 NaCl, 0.2 g L�1 KCl,

1.15 g L�1 Na2HPO4 and 0.2 g L�1 KH2HPO4, pH 7.3) (Ox-

oid, Basingstoke, UK) with a manual homogenizer (Fisher,

Loughborough, UK) inside an anaerobic cabinet (10% H2,

10% CO2, 80% N2). Three donors were used who did not

have any history of gastrointestinal disorders and had

avoided probiotics, prebiotics and antibiotics for at least 3

months prior to the study. Fermentations were carried

out in triplicate at 37 1C. One sample was prepared without

any carbohydrate addition as a control. All additions,

inoculations and incubations were conducted inside an

anaerobic cabinet (10% H2, 10% CO2, 80% N2). Samples

(200 mL) were removed after 0 and 12 h of fermentation for

the enumeration of bacteria and short-chain fatty acid

(SCFA) analysis.

Enumerationof bacteria

Bacteria were counted using fluorescence in situ hybridiza-

tion (FISH). Samples (100 mL) were fixed overnight at 4 1C

with 4% (w/v) filtered paraformaldehyde (pH 7.2) in a ratio

of 1 : 3 (volume in volume, v/v). Samples were then washed

twice with filtered PBS, resuspended in 200mL of a mixture

of PBS–ethanol (1 : 1, v/v) and stored at �20 1C until

further analysis. Hybridization of the samples was carried

out as described previously (Rycroft et al., 2001) using

appropriate genus-specific 16S rRNA-targeted oligonucleo-

tide probes labelled with the fluorescent dye Cy3 (MWG

Biotech, Ebersberg, Germany) for the different bacteria, or

the nucleic acid stain 40,6-diamidino-2-phenylindole

(DAPI) for total cell counts. The probes used for each of

the bacteria, previously validated by different authors, were

Bif164, specific for Bifidobacterium (Langedijk et al., 1995),

Bac303, specific for Bacteroides (Manz et al., 1996), His150,

specific for Clostridium (histolyticum subgroup) (Franks

et al., 1998), EREC482, specific for Eubacterium (Clostri-

dium coccoides–Eubacterium rectale group) (Franks et al.,

1998), Lab158, specific for Lactobacillus/Enterococcus

(Harmsen et al., 1999), and ATO291, specific for Atopobium

(Coriobacterium group) (Harmsen et al., 2000). The samples

were then filtered using 0.2mm pore size filters (Millipore

Corporation, Watford, UK) and cells were counted using a

Nikon Eclipse E400 fluorescence microscope (Nikon, King-

ston upon Thames, UK). A minimum of 15 random fields

was counted in each slide.

AnalysisofSCFAand lactic acid

Samples were centrifuged at 13 000 g for 5 min and 20mL

was injected onto the high performance liquid chroma-

tography (HPLC) system (Hewlett-Packard HP1050 series,

Agilent, Wokingham, UK) equipped with an ultraviolet

(UV) detector and an automatic injector. The column

was an ion-exclusion Aminex HPX-87H (7.8� 300 mm,

BioRad) maintained at 50 1C. The eluent was 0.005 mM

sulphuric acid in HPLC-grade water and the flow was

0.6 mL min�1. Detection was performed at 210 nm and data

were acquired using Chem Station for LC3D software

(Agilent Technologies). Quantification of the samples was

carried out using calibration curves for acetic, propionic,

butyric and lactic acids at concentrations between 0.5

and 100 mM.
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Prebiotic index (PI)

To obtain a general quantitative comparative measure of the

selectivity of fermentation and to compare the influence of

size and structure in the selective fermentation, a PI was

calculated. The PI has previously been reported in the

literature as a relationship between changes in the ‘bene-

ficial’ and ‘undesirable’ elements within the microflora, all

related to their starting levels (Olano-Martin et al., 2002;

Palframan et al., 2003; Sanz et al., 2005c). The equation used

was therefore as follows:

PI ¼aþ bþ g� d� e

a ¼ðBif 12=Bif 0Þ=total

b ¼ðLac12=Lac0Þ=total

g ¼ðEREC12=EREC0Þ=total

d ¼ðBac12=Bac0Þ=total

e ¼ðHis12=His0Þ=total

where total = total count (12 h)/total count (0 h),

Bif12 = bifidobacterial count at 12 h, Bif0 = bifidobacterial

count at 0 h, etc. No changes were observed in Atopobium

spp. and therefore it was not included in this equation.

Statistical analysis

Statistical analysis was performed using SPSS for Windows

version 12.0.1 (SPSS Inc., Chicago, IL). Univariate analysis

of variance (ANOVA) and least significant difference (LSD)

test were also used to determine significant differences

between the bacterial populations using the different oligo-

saccharides. The differences were considered to be signifi-

cant when Po 0.05.

Results

Oligosaccharide characterization

The composition of the oligosaccharide fractions separated

by the Bio-Gel P2 column was identified by MALDI-TOF

mass spectrometric analysis (Fig. 1). For GEOS (Fig. 1a),

fraction 1 was composed solely of gentiobiose (GEOS1).

GEOS2 was mainly composed of the degree of polymeriza-

tion 3 (DP3) fraction, although DP2, DP4 and DP5 were

also present. GEOS3 and GEOS4 were composed of DP4,

DP5, DP6, DP7 and DP8, with the main constituents being

DP4 and DP5, respectively. GEOS5 was also composed of

DP5–DP10, with the main constituents being DP6 and DP7.

For the alternansucrase gentiobiose acceptor products

(AGOS) (Fig. 1b), fraction 1 (AGOS A) was composed

mainly of DP3, with some DP4 also present. AGOS B and

AGOS C were formed mainly by DP4 and DP6, respectively.

AGOS D was composed of DP6–DP11, with the main

constituents being DP6, DP7 and DP8. Previous results

(Holt et al., 2005) have indicated that only a single DP3 pro-

duct is formed, which was identified as a-D-glucopyranosyl-

(1–6)-b-D-glucopyranosyl-(1–6)-D-glucopyranose. Two

oligosaccharides of DP4 were obtained and identified as

[a-D-glucopyranosyl-(1–6)]2-b-D-glucopyranosyl-(1–6)-D-glu-

copyranose and a-D-glucopyranosyl-(1–3)-a-D-glucopyrano-

syl-(1–6)-b-D-glucopyranosyl-(1–6)-D-glucopyranose. Higher

DP products have not yet been structurally characterized.

Batch culture fermentations

Table 1 shows the changes in the selected bacterial popula-

tions during the incubation of the different fractions of

oligosaccharides with a faecal inoculum. FOS and a com-

mercial mixture of GEOS were also included in this study.

All the samples used showed a significant increase in

bifidobacterial populations, with AGOS C presenting the

greatest value. A significant increase in bacteroides was

detected in GEOS5, whereas AGOS D and GEOS resulted

in the highest populations of clostridia. The Lactobacillus

population did not vary significantly from the initial sam-

ple; however, some changes could be seen in the samples.

FOS and GEOS showed the greatest populations, whereas

GEOS5 presented the lowest. Atopobium spp. did not show

significant differences during the fermentation process.

A PI was calculated for each sample to obtain a quantita-

tive measure of the degree of selectivity of fermentation.

Figure 2 shows the values obtained for these PIs. GEOS2 and

AGOS B revealed the highest PI values, even greater than

FOS. The higher molecular weight oligosaccharides GEOS4

and GEOS5 presented the lowest PIs due to increases in

clostridia and low values of lactobacilli.

Table 2 shows the SCFA and lactic acid compositions.

Lactic and acetic acids, which are mainly produced by

bifidobacteria, showed the lowest values for GEOS5, AGOS

C and AGOS D. The latter sample showed the largest

amount of propionic and butyric acids, followed by GEOS5

and GEOS1.

Discussion

Some authors have indicated the potential prebiotic effect of

GEOS (Rycroft et al., 2001); however, more in vitro and in

vivo studies are necessary to confirm their functional

properties. As indicated in previous studies, GEOS showed

a promoting effect on the growth of bifidobacteria (8.64

log). Although no significant variations were found for the

growth of these bacteria amongst the different molecular

weights, GEOS3, GEOS4 and GEOS5 showed the greatest

values; however, these fractions also resulted in the highest

clostridia and bacteroides populations. Previous studies

(Rycroft et al., 2001) have shown that GEOS is not as

selective as FOS, and that clostridia increase during in vitro

fermentations. These results were confirmed in this study
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Fig. 1. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of oligosaccharide fractions obtained after

separation by Bio-Gel P2. (a) Gentiooligosaccharides (GEOS). (b) Alternansucrase gentiobiose acceptor products (AGOS).
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for the mixture of GEOS (7.52 log); however, although a

slight increase in clostridia was detected for most of the

samples, when the different molecular weight fractions were

considered independently, none showed a significant in-

crease in these bacteria. Therefore, the prebiotic selectivity of

GEOS was highest when they were separated into their

different DPs, with GEOS1 and GEOS2 showing the greatest

values.

Recently, studies using pure cultures of the AGOS mix-

ture have demonstrated that these carbohydrates are selec-

tively utilized by many species of Bifidobacterium, but do not

support the growth of Lactobacillus spp., Bacteroides thetaio-

tamicron, coliforms or pathogenic bacteria (Holt et al.,

2005). However, mixed culture work is essential to deter-

mine their prebiotic selectivity, as some bacteria can meta-

bolize the end products of others (Gibson & Roberfroid,

1995). Moreover, previous data have not considered the

influence of the molecular weight on the prebiotic effect.

Our samples did not result in an increase in Lactobacillus

populations; however, all promoted the growth of bifido-

bacteria, AGOS C generating the greatest value. However,

the highest PI was found with AGOS B (DP4–5). AGOS D

presented the greatest production of butyric acid and also

the greatest increase in clostridia (8.57 log) and eubacteria

(8.51 log), which are precursors of this SCFA.

In general, AGOS fractions with a similar molecular

weight to GEOS showed higher prebiotic selectivity, apart

from DP3. The presence of a linkages contributes towards

the increased prebiotic activity. This effect has been seen in

previous studies (Sanz et al., 2005b), in which glucobioses

with a linkages had higher PI values than those with b
linkages.

These studies have some value in predicting the potential

prebiotic effect of gentiobiose-derived oligosaccharides.
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Fig. 2. Prebiotic index (PI) scores from batch cultures at 12 h and 37 1C

using fructooligosaccharides (FOS), gentiooligosaccharides (GEOS) and

alternansucrase gentiobiose acceptor products (AGOS) (n = 3).

Table 1. Changes in bacterial population (log cell mL–1) after 12 h of in vitro fermentation incubation with fructooligosaccharides (FOS), gentiooligo-

saccharides (GEOS) and alternansucrase gentiobiose acceptor products (AGOS) (n = 3)

Total bacteria Bifidobacteria Bacteroides Clostridia Eubacteria Lactobacillus Atopobium

0 h 9.2 (0.1)a 7.9 (0.2)a 8.0 (0.1)a 6.9 (0.1)a,b 8.2 (0.0)a,b 6.9 (0.2)a,b,c 7.5 (0.2)a

Control 9.2 (0.0)a 7.9 (0.1)a 8.0 (0.1)a 7.0 (0.0)a,b 8.0 (0.1)a 6.8 (0.1)a,b,c 7.6 (0.1)a

FOS 9.2 (0.1)a 8.5 (0.1)b,c 8.1 (0.0)a 6.9 (0.2)a,b 8.2 (0.1)a,b 7.3 (0.2)a 7.7 (0.2)a

GEOS 9.2 (0.0)a 8.6 (0.1)b,c,d 8.1 (0.1)a 7.5 (0.1)c 8.1 (0.1)a 7.1 (0.1)a,b,c 7.7 (0.1)a

GEOS1 9.1 (0.0)a 8.4 (0.2)b,c 8.2 (0.1)a 6.8 (0.1)a 8.4 (0.1)a,b 7.0 (0.3)a,b,c 7.7 (0.2)a

GEOS2 9.1 (0.1)a 8.4 (0.1)b,c 8.1 (0.1)a 7.1 (0.1)a,b,c 8.4 (0.1)a,b 7.3 (0.2)a 7.6 (0.1)a

GEOS3 9.5 (0.0)c 8.6 (0.1)b,c,d 8.2 (0.0)a 7.2 (0.2)b,c 8.3 (0.1)a,b 7.2 (0.2)a,b 7.7 (0.1)a

GEOS4 9.4 (0.0)b,c 8.5 (0.1)b,c 8.1 (0.0)a 7.2 (0.2)a,b,c 8.0 (0.1)a 6.7 (0.0)b,c 7.4 (0.1)a

GEOS5 9.5 (0.1)c 8.7 (0.1)c,d 8.4 (0.0)b 7.2 (0.2)b,c 8.3 (0.2)a,b 6.6 (0.1)c 7.8 (0.2)a

AGOS A 9.3 (0.0)a,b 8.5 (0.1)b,c 8.2 (0.1)a 7.3 (0.1)b,c 8.2 (0.1)a,b 7.1 (0.3)a,b,c 7.5 (0.1)a

AGOS B 9.2 (0.0)a 8.7 (0.1)c,d 8.1 (0.1)a 7.0 (0.3)a,b 8.1 (0.1)a 7.2 (0.2)a,b 7.4 (0.2)a

AGOS C 9.5 (0.1)c 8.9 (0.1)d 8.0 (0.1)a 7.0 (0.1)a,b 8.3 (0.1)a,b 6.7 (0.2)b,c 7.6 (0.1)a

AGOS D 9.2(0.1)a 8.3 (0.1)b 8.6 (0.1)b 7.0 (0.1)a,b 8.5 (0.1)b 7.0 (0.3)a,b,c 7.6 (0.1)a

A control sample without carbohydrate source is also included. Different superscript letters indicate significant differences (Po 0.05) for each bacterial

genus. Standard error in parentheses.

Table 2. Short-chain fatty acid and lactic acid concentrations (mM)

produced after 12 h of in vitro fermentation with fructooligosaccharides

(FOS), gentiooligosaccharides (GEOS) and alternansucrase gentiobiose

acceptor products (AGOS) (n = 3)

Lactic Acetic Propionic Butyric

0 h 2.2 (0.2)a 0.4 (0.0)a 0.1 (0.0)a 0.1 (0.0)a

Control 0.4 (0.0)a 11.5 (0.8)a 2.2 (0.3)b,c 2.2 (0.2)b,c

FOS 29.1 (2.1)d 36.6 (2.6)b,c 2.2 (0.2)b,c 1.7 (0.5)a,b

GEOS 38.6 (3.9)c 45.8 (2.7)c,d 2.4 (0.3)b,c 1.9 (0.7)a,b,c

GEOS1 27.1 (7.2)d 33.4 (10.4)b 3.3 (0.4)d,e 3.6 (1.2)c,d

GEOS2 34.1 (2.8)c,d 45.9 (1.7)c,d 2.0 (0.2)b 2.1 (0.7)b,c

GEOS3 30.8 (1.5)c,d 50.4 (3.1)d 2.5 (0.3)b,c 2.5 (0.8)b,c

GEOS4 27.0 (0.5)d 49.6 (2.8)d 2.6 (0.2)b,c 2.6 (0.8)b,c

GEOS5 13.2 (1.5)b 36.7 (3.0)b,c 3.8 (0.3)e 3.4 (0.8)b,c

AGOS A 34.6 (3.9)c,d 49.9 (3.0)d 2.3 (0.2)b,c 1.8 (0.6)a,b,d

AGOS B 34.0 (1.7)c,d 53.1 (4.0)d 2.4 (0.2)b,c 1.8 (0.5)a,b,d

AGOS C 8.4 (0.7)a,b 45.4 (4.6)c,d 2.8 (0.2)c,d 2.4 (0.4)b,c

AGOS D 0.4 (0.0)a 26.8 (2.4)b 7.1 (0.2)f 3.8 (0.4)c

A control sample without carbohydrate source is also included. Different

superscript letters indicate significant differences (Po 0.05) for each

acid. Standard error in parentheses.
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Increased knowledge of the influence of the molecular

weight on prebiotic selectivity may help to develop new

products. On the basis of these data, GEOS and AGOS seem

to be promising sources of prebiotic carbohydrates.
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